Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(dimethylammonium) tetrachloridoferrate(II)

Thorsten Morawitz, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 8 May 2007; accepted 10 May 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (e–Cl) = 0.001 Å; R factor = 0.034; wR factor = 0.071; data-to-parameter ratio = 20.6.

The title compound, $(C_2H_8N)_2[FeCl_4]$, is composed of discrete dimethylammonium cations and tetrachloridoferrate(II) anions, which are held together in the crystal structure by $N-H\cdots Cl$ hydrogen bonds. It is isostructural with dimethylammonium tetrachloridocobaltate(II) and dimethylammonium tetrachloridomercurate(II).

Related literature

For the tetrachloridocobaltate, see Williams *et al.* (1992); for the tetrachloridomercurate, see Ben Salah *et al.* (1982).

For related literature, see: Morawitz et al. (2007).

2[CH3-NH2-CH3]+ [FeCl4]2-

Experimental

Crystal data

 $(C_2H_8N)_2$ [FeCl₄] $M_r = 289.84$ Monoclinic, $P_{2_1/n}$ a = 7.8999 (5) Å b = 11.2878 (9) Å c = 14.5064 (9) Å $\beta = 95.828$ (5)° $V = 1286.89 (15) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.96 \text{ mm}^{-1}$ T = 173 (2) K $0.15 \times 0.13 \times 0.08 \text{ mm}$ $R_{\rm int} = 0.064$

18093 measured reflections

2477 independent reflections

2026 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS II two-circle

diffractometer Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{\rm min} = 0.758, T_{\rm max} = 0.859$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.034 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.071 & \text{independent and constrained} \\ S = 1.02 & \text{refinement} \\ 2477 \text{ reflections} & \Delta\rho_{\text{max}} = 0.33 \text{ e } \text{ Å}^{-3} \\ 120 \text{ parameters} & \Delta\rho_{\text{min}} = -0.71 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl2 N1 - H1B \cdots Cl4^{i} N2 - H2A \cdots Cl2^{ii} N2 - H2A \cdots Cl1^{ii} N2 - H2B \cdots Cl3$	0.904 (10)	2.431 (19)	3.240 (2)	149 (3)
	0.907 (10)	2.40 (2)	3.201 (2)	148 (3)
	0.907 (10)	2.62 (3)	3.291 (2)	131 (3)
	0.907 (10)	2.76 (3)	3.362 (2)	125 (3)
	0.914 (10)	2.323 (13)	3.227 (2)	170 (4)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2267).

References

- Ben Salah, A., Bats, J. W., Fuess, H. & Daoud, A. (1982). Inorg. Chim. Acta, 63, 169–175.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Morawitz, T., Kern, B., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, m1433.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Williams, I. D., Brown, P. W. & Taylor, N. J. (1992). Acta Cryst. C48, 263-266.

supplementary materials

Acta Cryst. (2007). E63, m1683 [doi:10.1107/S1600536807022994]

Bis(dimethylammonium) tetrachloridoferrate(II)

T. Morawitz, H.-W. Lerner and M. Bolte

Comment

We report here the X-ray crystal structure analysis of $[NMe_2H_2]_2[FeCl_4]$. Very recently we have described the solid-state structure of the manganese complex $[NMe_2H_2]_2[MnBr_4]$ (Morawitz *et al.*, 2007). The synthesis protocol of $[NMe_2H_2]_2[FeCl_4]$ was similar to that of the manganese derivative $[NMe_2H_2]_2[MnBr_4]$. X-ray quality crystals of $[NMe_2H_2]_2[FeCl_4]$ were grown by diffusion of hexane into a solution of $[NMe_2H_2]_2[FeCl_4]$ in tetrahydrofuran at ambient temperature.

The title compound is composed of discrete dimethylammonium cations and tetrachloroiron(II) anions, which are held together in the crystal by N—H…Cl hydrogen bonds. It is isostructural with dimethylammonium tetrachlorocobaltate(II) (Williams *et al.*, 1992) and dimethylammonium tetrachloromercurate(II) (Ben Salah *et al.*, 1982).

Experimental

By the reaction (see Fig. 2) of the 1,4-phenylene-bridged Li scorpionate (I) (0.24 g, 0.47 mmol) with FeCl₂ (0.12 g, 0.94 mmol) and $[NMe_2H_2][Br]$ (*ca* 0.1 mmol) in 30 ml THF, $[NMe_2H_2]_2[FeCl_4]$ was obtained. X-ray quality crystals of $[NMe_2H_2]_2[FeCl_4]$ were grown by diffusion of hexane into a solution of $[NMe_2H_2]_2[FeCl_4]$ in tetrahydrofuran at ambient temperature.

Refinement

H atoms bonded to C were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)]$ using a riding model with C—H = 0.98 Å. H atoms bonded to N were freely refined with the N—H distances restrained to 0.91 (1) Å.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.

Fig. 2. The anion of the starting compound (I).

Bis(dimethylammonium) tetrachloridoferrate(II)

Crystal data	
(C ₂ H ₈ N) ₂ [FeCl ₄]	$F_{000} = 592$
$M_r = 289.84$	$D_{\rm x} = 1.496 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 10454 reflections
<i>a</i> = 7.8999 (5) Å	$\theta = 3.4 - 26.0^{\circ}$
b = 11.2878 (9) Å	$\mu = 1.96 \text{ mm}^{-1}$
c = 14.5064 (9) Å	T = 173 (2) K
$\beta = 95.828 \ (5)^{\circ}$	Block, colourless
$V = 1286.89 (15) \text{ Å}^3$	$0.15\times0.13\times0.08~mm$
Z = 4	

Data collection

Stoe IPDSII two-circle diffractometer	2477 independent reflections
Radiation source: fine-focus sealed tube	2026 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.064$
T = 173(2) K	$\theta_{\text{max}} = 25.9^{\circ}$
ω scans	$\theta_{\min} = 3.4^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.758, T_{\max} = 0.859$	$k = -13 \rightarrow 13$
18093 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2477 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$

120 parameters

 $\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$

4 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	0.70968 (4)	0.29611 (3)	0.45336 (2)	0.02135 (11)
Cl1	0.71106 (8)	0.50045 (5)	0.44186 (5)	0.03030 (16)
Cl2	0.67392 (8)	0.23483 (6)	0.60487 (4)	0.02816 (15)
C13	0.46470 (8)	0.22615 (5)	0.36767 (5)	0.03004 (16)
Cl4	0.95767 (8)	0.21556 (6)	0.41103 (5)	0.03347 (17)
N1	0.2669 (3)	0.1914 (2)	0.57052 (17)	0.0304 (5)
H1A	0.368 (2)	0.227 (3)	0.565 (2)	0.040 (9)*
H1B	0.207 (4)	0.224 (3)	0.5201 (16)	0.048 (10)*
C1	0.2007 (4)	0.2229 (3)	0.6601 (2)	0.0435 (7)
H1C	0.0846	0.1925	0.6606	0.065*
H1D	0.2000	0.3093	0.6671	0.065*
H1E	0.2739	0.1877	0.7115	0.065*
C2	0.2777 (4)	0.0616 (3)	0.5549 (3)	0.0454 (8)
H2C	0.3563	0.0262	0.6038	0.068*
H2D	0.3192	0.0469	0.4945	0.068*
H2E	0.1646	0.0262	0.5559	0.068*
N2	0.3056 (3)	0.4867 (2)	0.32772 (16)	0.0283 (5)
H2A	0.344 (4)	0.535 (2)	0.3754 (16)	0.044 (9)*
H2B	0.344 (5)	0.4129 (17)	0.345 (3)	0.068 (12)*
C3	0.3852 (3)	0.5206 (3)	0.24341 (19)	0.0323 (6)
H3A	0.3535	0.4631	0.1940	0.048*
H3B	0.5093	0.5216	0.2572	0.048*
H3C	0.3456	0.5996	0.2232	0.048*
C4	0.1171 (3)	0.4845 (3)	0.3142 (2)	0.0373 (7)
H4A	0.0749	0.5612	0.2900	0.056*
H4B	0.0724	0.4690	0.3737	0.056*
H4C	0.0793	0.4219	0.2701	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Fe1	0.01938 (18)	0.02096 (19)	0.0236 (2)	0.00109 (13)	0.00171 (13)	0.00027 (14)	
Cl1	0.0325 (3)	0.0207 (3)	0.0377 (4)	-0.0013 (2)	0.0031 (3)	0.0037 (3)	
Cl2	0.0308 (3)	0.0283 (3)	0.0250 (3)	-0.0009 (2)	0.0008 (2)	0.0049 (2)	
C13	0.0281 (3)	0.0271 (3)	0.0330 (4)	-0.0023 (2)	-0.0066 (3)	-0.0033 (3)	
Cl4	0.0247 (3)	0.0349 (4)	0.0416 (4)	0.0068 (2)	0.0077 (3)	-0.0039 (3)	
N1	0.0281 (12)	0.0259 (12)	0.0373 (13)	-0.0034 (9)	0.0039 (10)	0.0055 (10)	
C1	0.0531 (19)	0.0374 (17)	0.0420 (18)	-0.0013 (13)	0.0151 (15)	0.0073 (14)	
C2	0.0532 (19)	0.0236 (14)	0.059 (2)	-0.0013 (13)	0.0033 (16)	0.0007 (14)	
N2	0.0283 (11)	0.0287 (12)	0.0272 (12)	0.0016 (9)	-0.0007 (9)	0.0012 (10)	
C3	0.0297 (13)	0.0397 (16)	0.0279 (14)	0.0023 (11)	0.0054 (11)	0.0000 (12)	
C4	0.0271 (14)	0.0424 (17)	0.0422 (17)	-0.0071 (12)	0.0025 (12)	0.0051 (14)	
Geometric para	meters (Å, °)						
Fe1—Cl4		2.2992 (7)	C2—	H2D	0.98	800	
Fe1—Cl1		2.3128 (7)	C2—	H2E	0.98	0.9800	
Fe1—Cl3		2.3293 (7)	N2—	C3	1.48	32 (4)	
Fe1—Cl2		2.3483 (7)	N2—	C4	1.48	3 (3)	
N1—C2		1.486 (4)	N2—	H2A	0.90	07 (10)	
N1-C1		1.493 (4)	N2—	H2B	0.91	4 (10)	
N1—H1A		0.904 (10)	C3—	H3A	0.98	300	
N1—H1B		0.907 (10)	C3—	H3B	0.98	300	
C1—H1C		0.9800	C3—	H3C	0.98	300	
C1—H1D		0.9800	C4—	H4A	0.98	300	
C1—H1E		0.9800	C4—	H4B	0.98	800	
C2—H2C		0.9800	C4—	H4C	0.98	300	
Cl4—Fe1—Cl1		111.39 (3)	N1—	C2—H2E	109	.5	
Cl4—Fe1—Cl3		114.06 (3)	H2C-		109	.5	
Cl1—Fe1—Cl3		108.02 (3)	H2D-	—С2—Н2Е	109	.5	
Cl4—Fe1—Cl2		108.68 (3)	C3—	N2—C4	113.	6 (2)	
Cl1—Fe1—Cl2		111.30 (3)	C3—	N2—H2A	110	(2)	
Cl3—Fe1—Cl2		103.14 (3)	C4—	N2—H2A	111	(2)	
C2—N1—C1		113.5 (2)	C3—	N2—H2B	108	(3)	
C2—N1—H1A		111 (2)	C4—2	N2—H2B	109	(3)	
C1—N1—H1A		111 (2)	H2A-	N2H2B	105	(3)	
C2—N1—H1B		108 (2)	N2—	С3—НЗА	109	.5	
C1—N1—H1B		114 (2)	N2—	С3—Н3В	109	.5	
H1A—N1—H1B	1	98 (3)	H3A-	—С3—Н3В	109	.5	
N1—C1—H1C		109.5	N2—	С3—НЗС	109	.5	
N1—C1—H1D		109.5	H3A-	—С3—Н3С	109	.5	
H1C—C1—H1D	1	109.5	H3B-	—С3—Н3С	109	.5	
N1—C1—H1E		109.5	N2—	C4—H4A	109	.5	
H1C—C1—H1E		109.5	N2—	C4—H4B	109	.5	
H1D—C1—H1E		109.5	H4A-	C4H4B	109	.5	

supplementary materials

N1—C2—H2C	109.5	N2—C4—H4C	10	09.5	
N1—C2—H2D	109.5	Н4А—С4—Н4С	10	09.5	
H2C—C2—H2D	109.5	Н4В—С4—Н4С	10	09.5	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H···A	
N1—H1A···Cl2	0.904 (10)	2.431 (19)	3.240 (2)	149 (3)	
N1—H1B···Cl4 ⁱ	0.907 (10)	2.40 (2)	3.201 (2)	148 (3)	
N2—H2A…Cl2 ⁱⁱ	0.907 (10)	2.62 (3)	3.291 (2)	131 (3)	
N2—H2A…Cl1 ⁱⁱ	0.907 (10)	2.76 (3)	3.362 (2)	125 (3)	
N2—H2B…Cl3	0.914 (10)	2.323 (13)	3.227 (2)	170 (4)	
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x+1$, $-y+1$, $-z+1$.					

